Customized Hot Rolled W14*82 W14*109 W8*40 W16*89 ASTM A36 GB Q235b Carbon Steel Hea Heb 150 H Beam

PRODUCT PRODUCTION PROCESS
The production process for standard H-beams typically includes the following key steps:
Raw Material Preparation: Steel billets are cleaned and heated in preparation for subsequent forming.
Hot Rolling: The preheated billets are fed into a hot rolling mill, where they are rolled through multiple sets of rollers, gradually forming the H-beam cross-section.
Cold Working (Optional): To improve precision and surface quality, the hot-rolled H-beams undergo cold working processes such as cold rolling and drawing.
Cutting and Finishing: The rolled and cold-worked H-beams are cut and finished to meet specific dimensions and lengths as per customer specifications
Surface Treatment: The H-beams are cleaned and treated with rust prevention to ensure surface quality and corrosion resistance
Inspection and Packaging: Finished H-beams are inspected for appearance, dimensional accuracy, and mechanical properties. Once qualified, they are packaged and shipped.

PRODUCT SIZE

Designation | Unt Weight kg/m) |
Standard Secional imension mm |
Sectional Ama (cm² |
|||||
W | H | B | 1 | 2 | r | A | ||
HE28 | AA | 61.3 | 264.0 | 280.0 | 7.0 | 10.0 | 24.0 | 78.02 |
A | 76.4 | 270.0 | 280.0 | 80 | 13.0 | 24.0 | 97.26 | |
B | 103 | 280.0 | 280.0 | 10.5 | 18.0 | 24.0 | 131.4 | |
M | 189 | 310.0 | 288.0 | 18.5 | 33.0 | 24.0 | 240.2 | |
HE300 | AA | 69.8 | 283.0 | 300.0 | 7.5 | 10.5 | 27.0 | 88.91 |
A | 88.3 | 200.0 | 300.0 | 85 | 14.0 | 27.0 | 112.5 | |
B | 117 | 300.0 | 300.0 | 11.0 | 19.0 | 27.0 | 149.1 | |
M | 238 | 340.0 | 310.0 | 21.0 | 39.0 | 27.0 | 303.1 | |
HE320 | AA | 74.3 | 301.0 | 300.0 | 80 | 11.0 | 27.0 | 94.58 |
A | 97.7 | 310.0 | 300.0 | 9.0 | 15.5 | 27.0 | 124.4 | |
B | 127 | 320.0 | 300.0 | 11.5 | 20.5 | 27.0 | 161.3 | |
M | 245 | 359.0 | 309.0 | 21.0 | 40.0 | 27.0 | 312.0 | |
HE340 | AA | 78.9 | 320.0 | 300.0 | 85 | 11.5 | 27.0 | 100.5 |
A | 105 | 330.0 | 300.0 | 9.5 | 16.5 | 27.0 | 133.5 | |
B | 134 | 340.0 | 300.0 | 12.0 | 21.5 | 27.0 | 170.9 | |
M | 248 | 377.0 | 309.0 | 21.0 | 40.0 | 27.0 | 315.8 | |
HE360 | AA | 83.7 | 339.0 | 300.0 | 9.0 | t2.0 | 27.0 | 106.6 |
A | 112 | 350.0 | 300.0 | 10.0 | 17.5 | 27.0 | 142.8 | |
B | 142 | 360.0 | 300.0 | 12.5 | 22.5 | 27.0 | 180.6 | |
M | 250 | 395.0 | 308.0 | 21.0 | 40.0 | 27.0 | 318.8 | |
HE400 | AA | 92.4 | 3780 | 300.0 | 9.5 | 13.0 | 27.0 | 117.7 |
A | 125 | 390.0 | 300.0 | 11.0 | 19.0 | 27.0 | 159.0 | |
B | 155 | 400.0 | 300.0 | 13.5 | 24.0 | 27.0 | 197.8 | |
M | 256 | 4320 | 307.0 | 21.0 | 40.0 | 27.0 | 325.8 | |
HE450 | AA | 99.8 | 425.0 | 300.0 | 10.0 | 13.5 | 27.0 | 127.1 |
A | 140 | 440.0 | 300.0 | 11.5 | 21.0 | 27.0 | 178.0 | |
B | 171 | 450.0 | 300.0 | 14.0 | 26.0 | 27.0 | 218.0 | |
M | 263 | 4780 | 307.0 | 21.0 | 40.0 | 27.0 | 335.4 | |
Designatio | Unit Weight kg/m) |
Standad Sectional Dimersion (mm) |
Sectiona Area (cm²) |
|||||
W | H | B | 1 | 2 | r | A | ||
HE50 | AA | 107 | 472.0 | 300.0 | 10.5 | 14.0 | 27.0 | 136.9 |
A | 155 | 490.0 | 300.0 | t2.0 | 23.0 | 27.0 | 197.5 | |
B | 187 | 500.0 | 300.0 | 14.5 | 28.0 | 27.0 | 238.6 | |
M | 270 | 524.0 | 306.0 | 21.0 | 40.0 | 27.0 | 344.3 | |
HE550 | AA | t20 | 522.0 | 300.0 | 11.5 | 15.0 | 27.0 | 152.8 |
A | 166 | 540.0 | 300.0 | t2.5 | 24.0 | 27.0 | 211.8 | |
B | 199 | 550.0 | 300.0 | 15.0 | 29.0 | 27.0 | 254.1 | |
M | 278 | 572.0 | 306.0 | 21.0 | 40.0 | 27.0 | 354.4 | |
HE60 | AA | t29 | 571.0 | 300.0 | t2.0 | 15.5 | 27.0 | 164.1 |
A | 178 | 500.0 | 300.0 | 13.0 | 25.0 | 27.0 | 226.5 | |
B | 212 | 600.0 | 300.0 | 15.5 | 30.0 | 27.0 | 270.0 | |
M | 286 | 620.0 | 305.0 | 21.0 | 40.0 | 27.0 | 363.7 | |
HE650 | AA | 138 | 620.0 | 300.0 | t2.5 | 16.0 | 27.0 | 175.8 |
A | 190 | 640.0 | 300.0 | t3.5 | 26.0 | 27.0 | 241.6 | |
B | 225 | 660.0 | 300.0 | 16.0 | 31.0 | 27.0 | 286.3 | |
M | 293 | 668.0 | 305.0 | 21.0 | 40.0 | 27.0 | 373.7 | |
HE700 | AA | 150 | 670.0 | 300.0 | 13.0 | 17.0 | 27.0 | 190.9 |
A | 204 | 600.0 | 300.0 | 14.5 | 27.0 | 27.0 | 260.5 | |
B | 241 | 700.0 | 300.0 | 17.0 | 32.0 | 27.0 | 306.4 | |
M | 301 | 716.0 | 304.0 | 21.0 | 40.0 | 27.0 | 383.0 | |
HE800 | AA | 172 | 770.0 | 300.0 | 14.0 | 18.0 | 30.0 | 218.5 |
A | 224 | 790.0 | 300.0 | 15.0 | 28.0 | 30.0 | 285.8 | |
B | 262 | 800.0 | 300.0 | 17.5 | 33.0 | 30.0 | 334.2 | |
M | 317 | 814.0 | 303.0 | 21.0 | 40.0 | 30.0 | 404.3 | |
HE800 | AA | 198 | 870.0 | 300.0 | 15.0 | 20.0 | 30.0 | 252.2 |
A | 252 | 800.0 | 300.0 | 16.0 | 30.0 | 30.0 | 320.5 | |
B | 291 | 900.0 | 300.0 | 18.5 | 35.0 | 30.0 | 371.3 | |
M | 333 | 910.0 | 302.0 | 21.0 | 40.0 | 30.0 | 423.6 | |
HEB1000 | AA | 222 | 970.0 | 300.0 | 16.0 | 21.0 | 30.0 | 282.2 |
A | 272 | 0.0 | 300.0 | 16.5 | 31.0 | 30.0 | 346.8 | |
B | 314 | 1000.0 | 300.0 | 19.0 | 36.0 | 30.0 | 400.0 | |
M | 349 | 1008 | 302.0 | 21.0 | 40.0 | 30.0 | 444.2 |

EN H-Shaped Steel
Grade: EN10034:1997 EN10163-3:2004
Specification:HEA HEB and HEM
Standard: EN
FEATURES
High Strength: The cross-sectional design of H-beams provides high bending strength and load-bearing capacity, making them suitable for long-span structures and heavy-load applications.
Good Stability: The cross-sectional design of H-beams provides excellent stability under compression and tension, helping to improve structural stability and safety.
Easy Construction: The design of H-beams makes them easy to connect and install during construction, helping to speed up project progress and improve efficiency.
High Resource Utilization: The design of H-beams fully utilizes the properties of steel, reducing material waste and contributing to resource conservation and environmental protection.
Wide Application: H-beams are suitable for a variety of building structures, bridges, machinery manufacturing, and other fields, and have broad application prospects.
Overall, external standard W-beams are characterized by high strength, good stability, and easy construction, making them an important structural steel material widely used in various engineering fields.

PRODUCT INSPECTION
Appearance Quality: Must comply with relevant standards and order requirements. The surface should be smooth and flat, free of obvious dents, scratches, rust, and other defects.
Geometric Dimensions: Key dimensions such as length, width, height, web thickness, and flange thickness must comply with standards and order requirements.
Bend: Must comply with standards and order requirements. This can be measured by testing the parallelism of the two ends or using a bendometer.
Twist: Must comply with standards and order requirements. This can be measured by checking the verticality of the sides or using a torsion meter.
Weight Deviation: Weight must comply with standards and order requirements and be verified by weighing.
Chemical Composition: If welding or other processing is involved, the chemical composition must comply with relevant standards and order requirements.
Mechanical Properties: Indicators such as tensile strength, yield point, and elongation must comply with standards and order requirements.
Non-destructive Testing: If required, it must be performed in accordance with relevant standards and order requirements to ensure acceptable intrinsic quality.
Packaging and Labeling: Must comply with standards and order requirements to facilitate subsequent transportation and storage.

PRODUCT APPLICATION
External standard H-beams are widely used in the construction and engineering fields, including but not limited to the following aspects:
Structural engineering, bridge engineering, machinery manufacturing, shipbuilding, steel structure construction,

PACKAGING AND SHIPPING
Packaging: We offer a variety of packaging options, including bare packaging, wooden pallet packaging, and plastic packaging, tailored to customer requirements. The key focus is protecting the steel profile surface, ensuring it remains scratch-free and corrosion-free.
Labeling: Product information, including model, specifications, and quantity, is clearly marked on the packaging in a conspicuous area for easy identification and management.
Loading: Products must be properly positioned during loading to prevent damage from collisions and crushing during transportation.
Transportation: We select appropriate transportation methods, such as trucks and rail, based on customer needs and transportation distance.
Unloading: Upon arrival at the destination, carefully unload the steel profile to prevent damage.
Storage: Steel profiles should be stored in a dry, well-ventilated warehouse, protected from moisture and other adverse factors.


COMPANY STRENGTH


FAQ
1.How can I get a quotation from you ?
You can leave us message, and we will reply every message in time.
2.Will you delivery the goods on time?
Yes,we promise to provide best quality products and delivery on time. Honesty is our company's tenet.
3.Can I get samples before order ?
Yes, of course. Usually our samples are free,we can produce by your samples or technical drawings.
4.What is your payment terms?
Our usual payment term is 30% deposit, and rest against B/L. EXW, FOB,CFR, CIF.
5.Do you accept the third party inspection?
Yes absolutely we accept.
6.How do we trust your company?
We specialise in steel business for years as golden supplier, headquarter locates in Tianjin province, welcome to investigate in any ways, by all means.