EN Standard Size H Beam Steel HEA HEB IPE 150×150 H beam Price

PRODUCT PRODUCTION PROCESS
These designations signify different types of IPE beams based on their dimensions and properties:
- HEA (IPN) beams: These IPE beams have exceptionally wide flange widths and flange thicknesses, making them suitable for heavy-duty structural applications.
- HEB (IPB) beams: These are IPE beams with a medium flange width and flange thickness, commonly used in construction for various structural purposes.
- HEM beams: These are IPE beams with a particularly deep and narrow flange, providing increased strength and load-carrying capacity.
These beams are designed to provide specific structural capabilities, and the choice of which type to use depends on the requirements of a particular construction project.

PRODUCT SIZE

Designation | Unt Weight kg/m) |
Standard Secional imension mm |
Sectional Ama (cm² |
|||||
W | H | B | 1 | 2 | r | A | ||
HE28 | AA | 61.3 | 264.0 | 280.0 | 7.0 | 10.0 | 24.0 | 78.02 |
A | 76.4 | 270.0 | 280.0 | 80 | 13.0 | 24.0 | 97.26 | |
B | 103 | 280.0 | 280.0 | 10.5 | 18.0 | 24.0 | 131.4 | |
M | 189 | 310.0 | 288.0 | 18.5 | 33.0 | 24.0 | 240.2 | |
HE300 | AA | 69.8 | 283.0 | 300.0 | 7.5 | 10.5 | 27.0 | 88.91 |
A | 88.3 | 200.0 | 300.0 | 85 | 14.0 | 27.0 | 112.5 | |
B | 117 | 300.0 | 300.0 | 11.0 | 19.0 | 27.0 | 149.1 | |
M | 238 | 340.0 | 310.0 | 21.0 | 39.0 | 27.0 | 303.1 | |
HE320 | AA | 74.3 | 301.0 | 300.0 | 80 | 11.0 | 27.0 | 94.58 |
A | 97.7 | 310.0 | 300.0 | 9.0 | 15.5 | 27.0 | 124.4 | |
B | 127 | 320.0 | 300.0 | 11.5 | 20.5 | 27.0 | 161.3 | |
M | 245 | 359.0 | 309.0 | 21.0 | 40.0 | 27.0 | 312.0 | |
HE340 | AA | 78.9 | 320.0 | 300.0 | 85 | 11.5 | 27.0 | 100.5 |
A | 105 | 330.0 | 300.0 | 9.5 | 16.5 | 27.0 | 133.5 | |
B | 134 | 340.0 | 300.0 | 12.0 | 21.5 | 27.0 | 170.9 | |
M | 248 | 377.0 | 309.0 | 21.0 | 40.0 | 27.0 | 315.8 | |
HE360 | AA | 83.7 | 339.0 | 300.0 | 9.0 | t2.0 | 27.0 | 106.6 |
A | 112 | 350.0 | 300.0 | 10.0 | 17.5 | 27.0 | 142.8 | |
B | 142 | 360.0 | 300.0 | 12.5 | 22.5 | 27.0 | 180.6 | |
M | 250 | 395.0 | 308.0 | 21.0 | 40.0 | 27.0 | 318.8 | |
HE400 | AA | 92.4 | 3780 | 300.0 | 9.5 | 13.0 | 27.0 | 117.7 |
A | 125 | 390.0 | 300.0 | 11.0 | 19.0 | 27.0 | 159.0 | |
B | 155 | 400.0 | 300.0 | 13.5 | 24.0 | 27.0 | 197.8 | |
M | 256 | 4320 | 307.0 | 21.0 | 40.0 | 27.0 | 325.8 | |
HE450 | AA | 99.8 | 425.0 | 300.0 | 10.0 | 13.5 | 27.0 | 127.1 |
A | 140 | 440.0 | 300.0 | 11.5 | 21.0 | 27.0 | 178.0 | |
B | 171 | 450.0 | 300.0 | 14.0 | 26.0 | 27.0 | 218.0 | |
M | 263 | 4780 | 307.0 | 21.0 | 40.0 | 27.0 | 335.4 | |
Designatio | Unit Weight kg/m) |
Standad Sectional Dimersion (mm) |
Sectiona Area (cm²) |
|||||
W | H | B | 1 | 2 | r | A | ||
HE50 | AA | 107 | 472.0 | 300.0 | 10.5 | 14.0 | 27.0 | 136.9 |
A | 155 | 490.0 | 300.0 | t2.0 | 23.0 | 27.0 | 197.5 | |
B | 187 | 500.0 | 300.0 | 14.5 | 28.0 | 27.0 | 238.6 | |
M | 270 | 524.0 | 306.0 | 21.0 | 40.0 | 27.0 | 344.3 | |
HE550 | AA | t20 | 522.0 | 300.0 | 11.5 | 15.0 | 27.0 | 152.8 |
A | 166 | 540.0 | 300.0 | t2.5 | 24.0 | 27.0 | 211.8 | |
B | 199 | 550.0 | 300.0 | 15.0 | 29.0 | 27.0 | 254.1 | |
M | 278 | 572.0 | 306.0 | 21.0 | 40.0 | 27.0 | 354.4 | |
HE60 | AA | t29 | 571.0 | 300.0 | t2.0 | 15.5 | 27.0 | 164.1 |
A | 178 | 500.0 | 300.0 | 13.0 | 25.0 | 27.0 | 226.5 | |
B | 212 | 600.0 | 300.0 | 15.5 | 30.0 | 27.0 | 270.0 | |
M | 286 | 620.0 | 305.0 | 21.0 | 40.0 | 27.0 | 363.7 | |
HE650 | AA | 138 | 620.0 | 300.0 | t2.5 | 16.0 | 27.0 | 175.8 |
A | 190 | 640.0 | 300.0 | t3.5 | 26.0 | 27.0 | 241.6 | |
B | 225 | 660.0 | 300.0 | 16.0 | 31.0 | 27.0 | 286.3 | |
M | 293 | 668.0 | 305.0 | 21.0 | 40.0 | 27.0 | 373.7 | |
HE700 | AA | 150 | 670.0 | 300.0 | 13.0 | 17.0 | 27.0 | 190.9 |
A | 204 | 600.0 | 300.0 | 14.5 | 27.0 | 27.0 | 260.5 | |
B | 241 | 700.0 | 300.0 | 17.0 | 32.0 | 27.0 | 306.4 | |
M | 301 | 716.0 | 304.0 | 21.0 | 40.0 | 27.0 | 383.0 | |
HE800 | AA | 172 | 770.0 | 300.0 | 14.0 | 18.0 | 30.0 | 218.5 |
A | 224 | 790.0 | 300.0 | 15.0 | 28.0 | 30.0 | 285.8 | |
B | 262 | 800.0 | 300.0 | 17.5 | 33.0 | 30.0 | 334.2 | |
M | 317 | 814.0 | 303.0 | 21.0 | 40.0 | 30.0 | 404.3 | |
HE800 | AA | 198 | 870.0 | 300.0 | 15.0 | 20.0 | 30.0 | 252.2 |
A | 252 | 800.0 | 300.0 | 16.0 | 30.0 | 30.0 | 320.5 | |
B | 291 | 900.0 | 300.0 | 18.5 | 35.0 | 30.0 | 371.3 | |
M | 333 | 910.0 | 302.0 | 21.0 | 40.0 | 30.0 | 423.6 | |
HEB1000 | AA | 222 | 970.0 | 300.0 | 16.0 | 21.0 | 30.0 | 282.2 |
A | 272 | 0.0 | 300.0 | 16.5 | 31.0 | 30.0 | 346.8 | |
B | 314 | 1000.0 | 300.0 | 19.0 | 36.0 | 30.0 | 400.0 | |
M | 349 | 1008 | 302.0 | 21.0 | 40.0 | 30.0 | 444.2 |

EN H-Shaped Steel
Grade: EN10034:1997 EN10163-3:2004
Specification:HEA HEB and HEM
Standard: EN
FEATURES
HEA, HEB, and HEM beams are European standard IPE (I-beam) sections used in construction and structural engineering. Here are some of the key features of each type:
HEA (IPN) beams:
Wide flange width and flange thickness
Suitable for heavy-duty structural applications
Provides good load-carrying capacity and bending resistance
HEB (IPB) beams:
Medium flange width and flange thickness
Versatile and commonly used in construction for various structural purposes
Offers a balance of strength and weight
HEM beams:
Particularly deep and narrow flange
Provides increased strength and load-carrying capacity
Designed for heavy-duty and high-stress applications
These beams are designed to meet specific structural requirements and are selected based on the intended use and load-bearing needs of a building or structure.

PRODUCT INSPECTION
H-beam inspection requirements primarily include the following aspects:
Appearance Quality: The appearance quality of H-beams must comply with relevant standards and order requirements. The surface should be smooth and flat, free of obvious defects such as dents, scratches, and rust.
Geometric Dimensions: The length, width, height, web thickness, and flange thickness of H-beams must comply with relevant standards and order requirements.
Bend: The bend of H-beams must comply with relevant standards and order requirements. This can be determined by measuring the parallelism of the two ends of the H-beam or using a bend gauge.
Twist: The twist of H-beams must comply with relevant standards and order requirements. This can be determined by measuring the verticality of the sides of the H-beam or using a torsion gauge.
Weight Deviation: The weight of H-beams must comply with relevant standards and order requirements. This can be determined by weighing.
Chemical Composition: If H-beams require welding or other processing, their chemical composition must comply with relevant standards and order requirements.
Mechanical Properties: The mechanical properties of H-beams must comply with relevant standards and order requirements, including tensile strength, yield point, and elongation. Nondestructive Testing: If H-beams require nondestructive testing, they should be conducted in accordance with relevant standards and order specifications to ensure their inherent quality.
Packaging and Marking: H-beam packaging and marking should comply with relevant standards and order specifications to facilitate transportation and storage.
In summary, the above requirements should be fully considered when inspecting H-beams to ensure their quality meets relevant standards and order specifications, providing users with the highest quality H-beam products.

APPLICATION
HEA, HEB, and HEM beams have a wide range of applications in the construction and structural engineering industry. Some common uses include:
- Building Construction: These beams are commonly used in the construction of commercial and industrial buildings, providing structural support for floors, roofs, and other load-bearing components.
Bridge Construction: They are used in bridge construction to support road decks and other structural components.
Industrial Structures: HEA, HEB, and HEM beams are commonly used in the construction of industrial facilities such as warehouses, manufacturing plants, and storage facilities.
Structural Framing: They are used to create the structural framework of large buildings and infrastructure projects, providing support for walls, cladding, and other structural components.
Equipment Support: These beams are used to support heavy machinery and equipment in various industrial settings.
Infrastructure Projects: HEA, HEB, and HEM beams are also used in the construction of infrastructure projects such as tunnels, airports, and power plants.
Overall, these beams are crucial in providing robust and reliable structural support in a wide variety of construction and engineering projects. Their versatility, strength, and load-bearing capacity make them essential components in modern building and infrastructure design.

PACKAGING AND SHIPPING
Packaging and Protection:
Packaging is crucial to maintaining the quality of H Shaped Steel Beam during transportation and storage. Steel should be securely strapped with high-strength strapping or tying to prevent movement and potential damage. Additionally, measures should be taken to protect the steel from moisture, dust, and other environmental factors. Wrapping the bundles with weather-resistant materials, such as plastic or tarpaulin, helps prevent corrosion and rust.
Loading and Securing for Transport:
Care should be taken when loading and securing packaged steel onto the transport vehicle. Using appropriate lifting equipment, such as a forklift or crane, ensures safe and efficient handling. Steel should be evenly distributed and properly aligned to prevent any structural damage during transport. After loading, secure the cargo with appropriate restraints, such as ropes or chains, to ensure stability and prevent shifting.


FAQ
1.How can I get a quotation from you ?
You can leave us message, and we will reply every message in time.
2.Will you delivery the goods on time?
Yes,we promise to provide best quality products and delivery on time. Honesty is our company's tenet.
3.Can I get samples before order ?
Yes, of course. Usually our samples are free,we can produce by your samples or technical drawings.
4.What is your payment terms?
Our usual payment term is 30% deposit, and rest against B/L. EXW, FOB,CFR, CIF.
5.Do you accept the third party inspection?
Yes absolutely we accept.
6.How do we trust your company?
We specialise in steel business for years as golden supplier, headquarter locates in Tianjin province, welcome to investigate in any ways, by all means.